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Image Compression
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Image compression techniques are techniques for storing and transmitting dig-
ital images using as few bit as possible. The key step in image compression
algorithms is the decomposition of an image in such a way that spatial corre-
lations of the pixel values are isolated. This paper describes an image decom-
position scheme based on two dimensional multiresolution wavelet analysis.
Some remarks on the errors caused by the compression algorithm are made.

The image compression algorithm has been implemented and some practical
results are shown.

1. INTRODUCTION TO DATA COMPRESSION

Image compression techniques—and in general, data compression techniques—
are techniques for storing or sending images using as few bits as possible for
encoding a complete image. A compressed image can either be exactly the same
as the original image, or differ from it in a limited and controlled way. An
1mage typically consists of 2566 x 256 pixels, each having an 8-bit grey value.
Images produced by satellites can be much larger and contain more bits per
pixel. The number of possible images of the mentioned format is (28)256%256 A
straightforward coding of such an image would require 524228 bits. The images
one usually comes across can be coded in a much smaller number of bits. This is
due to the fact that natural images contain a large amount of structure, making
pixel values predictable.

T'he idea that predictable information can be coded more efficiently than ran-
dom information is due to SHANNON [1].

Predicatable information can be coded in fewer bits than unpredictable infor-
mation. This can be seen from a simple example. Suppose that one wants to
encode a message which is either A, B, C or D. There are four possible mes-
sages, and these can be coded in two bits per message, for example using the
identifications A <« 00, B «— 01, C <~ 10, D « 11.

Suppose that it is known that some messages are to be sent more frequently
than others, for example:
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with relative frequency 1/2
with relative frequency 1/4
with relative frequency 1/8
with relative frequency 1/8

o QT

Message A will be sent relatively often. Therefore, it pays to give A a shorter
code, while giving the messages which occur less frequently a longer code. A
possible coding scheme is A < 0, B « 10, C « 110, D « 111. Note that no
code word 1s equal to the first part of another code word. Therefore it is possible
to send code words of different length without separators. The average number
of bits per message is now:

1 1 1 1

5 ><1+4 ><2—|—8 ><3-{—8 X 3 = 1.75.
Although the length of some code words is longer than 2, the net effect of the
alternative coding scheme is the use of fewer bits per message. It is of course
necessary that the receiver knows the code, but this has to be sent only once.
Therefore this coding is efficient if a large number of messages is to be sent.

Suppose that there are n possible messages having relative frequencies (pq, ...,

Pr)- It can be shown [1] that the number of bits per message required by any

coding scheme is at least H(p1,...,pn), where

H(plu R :pn) — = Zp‘z ]-ngz

=1

(log is the base-2 logarithm). If each relative frequency is of the form p/29, a
coding scheme can be designed in which each message has its own code word such
that the optimal compression rate is indeed achieved. If the relative frequencies
are not of such a special form, the optimal compression rate can not be achieved
if each message is to be given its own code word, but it can be approximated
arbitrarily close if messages are sent in groups and each group is given its own
code word. The quantity H is called the entropy of the sequence pi,...,p,. Lhe
entropy 1s maximal it all messages are equally probable, i.e. p; = 1/n for each i.
It the distribution of the messages is very peaked, the entropy is small.

If some grey values occur more often than others in an image, a coding scheme
as described above can be used to compress the image. The design of the code is
based on the relative frequencies of the grey values, which can be derived from
the histogram. The compression achieved by this method is not very large. The

bit rate for some typical images is about 7.5 bits per pixel (bpp) in stead of 8
bpp if no compression is done.

2. IMAGE DECOMPOSITION USING MULTIRESOLUTION ANALYSIS.

For most classes of images, individual pixel values can not only be predicted
by considering the histogram of the complete image, but also by looking at the
values of neighbouring pixels. A much more efficient coding scheme can therefore
be designed by taking into account the spatial correlations which occur in natural

o4



- il

images. In order to use the spatial correlations, the image must be transformed or
decomposed in such a way that the correlation between the parameters describing
the image i1s removed. A good image compression scheme requires a
good Image decomposition scheme. Image decomposition can be done as
follows: the image 1s split into a low resolution part, which can be described by
a smaller number of samples than the original image, and a difference signal,
which describes the difference between the low resolution image and the actual
image to be coded. Due to the correlations in natural images, the low resolution
version will be a good prediction of the true image; the difference signal will
have a histogram which is peaked around zero. As a result of this, the difference
signal can be coded with a relatively small number of bits per pixel. The low
resolution image can be described by a smaller number of samples than the
original image. Thus the total number of bits required to encode the image
1s smaller than the original number of bits to describe the whole iiage. The
low resolution image will still contain spatial correlations. Therefore, this image
is also decomposed into a low resolution image and a difference image, thus
making more efhicient coding possible. This decomposition is repeated several
times, such that a hierarchical image decomposition is created.

In the classical image decomposition scheme of BURT and ADELSON [2], a
low resolution image 1s calculated by applying a low pass filtering, followed by
subsampling. Only a quarter of the pixel values in the filtered image are stored.
Thus, the low resolution image has only half the size of the original image. This
reduced 1mage 1s expanded to the original image size and subtracted from the
original image. The result 1s the detail image. The detail image has the same
size as the original image. Therefore, the detail image and the reduced image
together contain more pixels than the original image. Yet the entropy of the
detail images is so low (for natural images) that compression can be achieved
with this scheme.

We now come to the description of an efhicient decomposition scheme based on
multiresolution wavelet bases. For a comprehensive discussion of mutliresolution
wavelet techniques, the reader is referred to HE1IJMANS [3]|. First the one dimen-
sional case 1s described. The two dimensional case is a straightforward extension
of the one dimensional case. Image compression using wavelets is described by
MALLAT [4] and has been worked out by DAUBECHIES [5]. We will follow the
treatment and notation of Daubechies.

LLet ¢ be the generator of a multiresolution wavelet basis. We put:

Omn (T) = 2””””(,15(2""”3: —n).

The spaces V,,, = spand,,,|n € Z correspond with the different resolution lev-
els of our decomposition. There 1s a function ¥ such that the space W,, =
SpanY,,n|n € Z with ¥,,, = 9—m/?2 (27 ™x — n) satisfies

Vrn-—l — ‘/7'7‘2, D W’I‘H- '

Let P,, and (),, denote the orthogonal projections on V,,, and W), , respectively.
Let the sequence (¢,),, .7 € ¢?(Z) be the signal we want to compress. It will be
convenient to define a sequence (c;,) <7, With ¢) = ¢,. With this sequence we
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assoclate a function f € V|, defined by:

f(@) =) chdon().

TL

A multiresolution analysis is applied to f. We can write:

f=Pf+Qf

The first term is the low resolution representation of /, contained in V7, whereas
the second term is the difference signal, contained in W;. We can write:

P f = ZC;]{:Q”M-
k

Then Cf}%; — <Plf: ¢1k> — <f: Qslk) — " C%((,Z‘)()n, lek') — Zn C?—Lhn~—2k where

We can also write:

L'hen dl — <Qlfa 7,/)1;;3> — Zn C% <¢)On7 w1k> = Zn ngn——%a where

gn = Q“I/Q/w(g)gb(zc — n)dzx.

As shown in Heijmans [3], it is possible to choose 1 in such a way that g, =

(—)"hi-n. As we will choose ¢ to be real valued, this implies g, = (=)"hy_,,.
By repeating this procedure N times we arrive at the decomposition

f=@Q1f+Qaf+...+QNf+ Pnf

where

and

T'he coeflicients ¢! and d} can be calculated from the recursion

¢/ = Hci™}
d = Gel!

where

(Ha)k — Zn hn--Qka'n:
(Ga)k — Zn In—-2k0n.
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These operations can be performed easily and are suitable for ir‘nplementation
in hardware. After a number of 1terat10ns the original sequence ¢ is decomposed
into a lowest resolution signal ¢/ and difference signals dV ,dNM 1 o dY of finer

and finer resolution. The original image can be reconstructed by repeated use
of the relation

Piif=Pif+Q,f Zc’am + }:d ik

This implies

C%M1 < '*--lf ¢J-—-—1 n>
>k o Biks Bim1n) + Sop AWty bj—1.)
chjhnmzk T Zk dkgﬁ 2k -

The reconstruction algorithm can therefore be described by the recursion

dl=H*& + G*’

where

(H*a)n — Zkz hn-—~2k:aka
(G*a), = Zk gn—2kQL.

The result of the recursion is

N
= > (H)Y TG + (1)
j=0

A two-dimensional multiresolution representation can be reconstructed using
products of the functions defining the one dimensional multiresolution represen-
tation. The linear space of functions defined on Z? is the tensor product of two
spaces of functions on Z:

V;' — ‘/i(l') 0% V;(IU)‘

The one dimensional decomposition can be used to construct a two dimensional
decomposition:

(Vig1 © V;‘fi) e (Vi ewh) e (Wi oVl e Wi ew!).
The different resolution spaces are :
VN = Span{¢Nn(x)¢Nm(y)l7nv n e Z}

T'he orthogonal complements are spanned by three types of functions:

WN - Span{ngn(as)z[)Nm(y), wNn(vfc)Qst(y)a 1/)Nn(flf)¢zvm(y)|m,7’l» S Z}

The multiresolution decomposition is described by the recursions

P; f Z Qf)j'm )¢’jn(y)s

T
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Qif = Y {dalbim(@)6in(4) + L G (2) 3 (y) + AT ()b () }

LT

The coefficients can be found by the recursion relations

The operators H,, G, and H,, G, act on the first and second indices, respec-
tively. One has for example:

(Hea)pg = Z fin—2pQng-
Tl

In two dimensions, the size of a low scale image is a quarter of the size of the
original image. Hence the number of coefficients needed to describe the difference
signal is three times as large as the number of coefficients needed to describe the
low resolution image. The signal ¢?*! is the coarse scale information. There are
three different signals: d(®)7+! indicates small scale variations where the signal
varies in the x-direction, but not in the y-direction. Thus a high value of ¢(*)i+1
indicates the presence of a vertical edge in the image. Likewise, a large value of
d'¥)J+1 indicates the presence of a horizontal edge and a large value of d(*¥)i+1
indicates the presence of a corner point.
T'he reconstruction algorithm is defined by the recursion

d~t =H;H; + GLH;d" + HLGdW)T + GGl d=v)7.

Images are defined on a regular grid. Most often the grid is a square, the
length of the edge being a power of 2. The initial sequence ¢ therefore has a
finite number of nonzero entries. In order to be able to perform the calculations.
one must choose ¢ in such a way that only a finite number of the coefficients
h, have a nonzero value. If such a choice is made, the total number of nonzero
coefficients in the sequences ¢/t1, d(z)i+1 d(y)+7+1 and d{*¥)7*1 is only slightly
larger than the number of nonzero coefﬁments in the sequence ¢?. The increase
1s caused by edge effects. If it is assumed that the image is periodic across the
boundaries, the edge effects are eliminated and there is no increase in the number
of coefhicients to be stored after each iteration.

The multiresolution decomposition described above depends on the choice of
an appropriate function ¢. Yet the algorithm uses only the coefficients A,, and g,.
Daubechies has derived conditions the h, and g, must satisfy in order to make
the algorithm work, without any reference to the function ¢. These conditions

are:
Z'hn| < 00 Zlgn| < 00
T T

Z{hnmﬂkhnmm -+ 9n—2k4n—21 — 6k:l
n

> Bn_zkgn-2 =0
T

28



Z h, = V2, Zgn = ().
Tt Tl

The second and third conditions guarantee that the original image can be
reconstructed from the decomposition and that the decomposition contains no
redundant information. The fourth conditions indicates that H acts as an aver-
aging operator, while G acts like a local detail filter.

3. COMPRESSION RATE AND RECONSTRUCTION EERRORS

It has been argued before that the possibility of image compression is due to
the predictability of natural images, or to be more precise, the fact that spatial
correlations between pixel values exist. In order to achieve sufficient compression,
the low level resolution functions must be a good prediction for the true image.
This means that images which contain only energy at the higher levels must

be sufficiently regular. Remember that (in one dimension) the reconstruction
equation reads:

N
CO — § :(H*)_y-—-—lG*dJ + (H*)NCN.
9 =0

We are therefore interested in sequences of the form (H*)" e where e has only
one nonzero entry. These sequences must be sufficiently regular for high values

of V.

In stead of looking at the sequences themselves, we will study the functions
defined by

"71(33) = (lef{X[ml/Q,l/Q])(I):

where x is the indicator function and the operator Ty is defined by

(Tuf)(x) = V2 haof(2z —n).

Thus problems with the spacing between the grid points at different resolution
are avoided. Moreover, this way of looking at things makes it possible to use the
concept of continuity of functions. By taking the Fourier transform one gets:

l

) = |[[HE 6| 222__5

j=1

where H(£) = 27125  h,e"™¢. Daubechies has proven the following

THEOREM 1: Let h,, H(&) and n; be defined as described above. Suppose that
H(&) has the form

1 R .
H(§) = [‘5(1 + 625)] anemg
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ne| _ N-1
such that ) . |fnlln|" < oo for some € > 0 and sup| S fnet™| = B < 2 .
Then 7, converges pointwise to the continuous function Moo defined by

It can be shown that

[[HE@7e)| = o1 +g)V-sB),

This implies that the regularity of 7., can be increased if one succeeds in choos-
Ing h, such that log B — N is sufficiently large. Daubechies has been able to
construct in this manner a family of wavelets of arbitrarily high regularity and
with compact support.

Exact reconstruction of the image is only possible if the decomposition coeffi-
cients are known exactly. As the coefficients are not Integers, this 1s not possible.
In practice, a quantisation of the coefficients is necessary. As the wavelet basis
1s orthonormal, the root-mean-square (RMS) error in the reconstructed image
can be expressed as

N 1/2
= |+ D0 (D) + (D) + (e)?]

N (true) — &N

Here ey is the error in the lowest resolution 1mage (6]2\, = Z:(cz-_7 i 7
(quantised))?) and the €, ¢/ and €.’ are the errors in the difference signals. The
higher levels contain less coefficients than the lower levels, but the coefficients
on the higher levels tend to be larger than those on lower levels. Therefore the
different levels make a contribution to the overall error of comparable magnitude.

Quantisation is a subject by itself. It stretches too far to treat it in this
paper, but we will make a few remarks. The true coefficients are real numbers.
(Quantisation is done by selecting a finite number of reals which form a so called
quantisation grid. Each coefficient is then replaced by the nearest point in the
grid. The most straightforward way of choosing the grid is taking all grid points
evenly separated. A more sophisticated choice is motivated by the fact that most
coetfficients in the detail signal have values near 0. T'herefore, choosing the grid
points not equally spaced, but closer together near 0 can reduce the total error.
For some coefficients far away from 0, the error can become larger and this can
cause typical artefacts in the reconstructed image.

We have implemented a quantisation scheme using grids with equally sepa-
rated grid points. The grid point separation is the same on all levels of the
decomposition. Even with such a simple quantisation scheme, bit rates as low
as 0.4 bits per pixel can be achieved while the quality of the reconstruction is
still sufficiently high. Due to the localisation of the low level basis functions,
small details in the image, like small bright or dark spots, are preserved better
than in most other image compression schemes.
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